.. SpeX Prism Library Analysis Toolkit documentation master file, created by sphinx-quickstart on Sat Jul 11 20:07:28 2015. You can adapt this file completely to your liking, but it should at least contain the root `toctree` directive. SPLAT Plotting Routines ======================= .. toctree :maxdepth: 3 The SPLAT plotting routines are designed to visualize spectral data and comparisons to other templates and models. These are all contained in the `splat.plot `_ module, which should be imported separately: >>> import splat.plot as splot Basic spectral plots -------------------- .. _`plot()`: api.html#splat.Spectrum.plot .. _`plotSpectrum()` : api.html#splat.plot.plotSpectrum .. _`plotMap()` : api.html#splat.plot.plotMap .. _`plotBatch()` : api.html#splat.plot.plotBatch .. _`plotSequence()` : api.html#splat.plot.plotSequence .. _`vizualizeIndices()` : api.html#splat.plot.vizualizeIndices .. _matplotlib: http://matplotlib.org/ .. _API: api.html .. _pyplot: http://matplotlib.org/api/pyplot_summary.html .. _matplotlib.figure.Figure: http://matplotlib.org/api/figure_api.html#matplotlib.figure.Figure .. _`properCoordinates()` : api.html#splat.utilities.properCoordinates The core plotting function is `plotSpectrum()`_, which allows flexible methods for displaying single or groups of spectra, and comparing spectra to each other. Nearly all of the functions described below are wrappers for `plotSpectrum()`_ with various options, described in more detail in the API_. Plots are made using the pyplot_ package in matplotlib_. The simplest way to visualize a spectrum is to simply call `plotSpectrum()`_ with the Spectrum class object: >>> import splat >>> import splat.plot as splot >>> spc = splat.getSpectrum(spt = 'T5', lucky=True)[0] >>> splot.plotspectrum(spc) .. image:: _images/plot_basic_example1.png :width: 400 :align: center You can also use the Spectrum class's built in `plot()`_ function: >>> spc.plot() .. image:: _images/plot_basic_example2.png :width: 400 :align: center Note that this adds a legend with the name of the source, the uncertainty spectrum (if present) and the zeropoint. These can be called explicitly within `plotSpectrum()`_ as well: >>> splot.plotspectrum(spc,legend=spc.name,showNoise=True,showZero=True) There are many options for adding details to your spectrum plot, listed below. In addition, the output of a call to `plotSpectrum()`_ is a matplotlib.figure.Figure_ class >>> plt = splat.plotspectrum(spc) >>> plt [] so you can use other options from this class to further augment your plot. Feature labels and legends ^^^^^^^^^^^^^^^^^^^^^^^^^^ Specific absorption features can be labeled on the plot by setting the ``features`` to a list of atoms and molecules. >>> spc = splat.getSpectrum(spt = 'T5', lucky=True)[0] >>> splot.plotSpectrum(spc,features=['h2o','ch4','h2']) .. image:: _images/plot_basic_features_example1.png :width: 400 :align: center The features currently contained in the code include: Lines: * `H I` lines at 1.004, 1.093, 1.281, 1.944, and 2.166 micron * `Na I`: lines at 0.819, 1.136, and 2.21 micron * `K I`: lines at 0.767, 0.770, 1.169, 1.177, 1.244 and 1.252 micron * `Ca I`: lines at 1.931, 1.946, 1.951, 1.978, 1.986, 1.987, 2.263, and 2.265 micron * `Ca II`: lines at 0.986, 0.993, 1.184, and 1.195 micron * `Mg I`: lines at 1.183, 1.209, 1.488, 1.503, 1.504, 1.575, 1.576, and 1.711 micron * `Al I`: lines at 1.313, 1.315, 1.672 and 1.676 micron * `Fe I`: lines at 1.143, 1.160, 1.161, 1.164, 1.169, 1.189, 1.198, 1.256, 1.288 and 1.501 micron Molecules: * `H2O`: bands at 0.92-0.95, 1.08-1.20, 1.33-1.55, and 1.72-2.14 micron * `CO`: band at 2.29-2.39 * `TiO`: bands at 0.76-0.80 and 0.825-0.831 micron * `VO`: band at 1.04-1.08 micron * `FeH`: bands at 0.98-1.03, 1.19-1.25, and 1.57-1.64 micron * `CH4`: bands at 1.10-1.24, 1.28-1.44, 1.60-1.76, and 2.20-2.35 micron * `H2`: broad absorption over 1.5-2.4 micron * `SB`: the spectral binary feature between 1.60-1.64 micron You can also set groups of features based on the type of object; options include ``mdwarf``, ``ldwarf`` and ``tdwarf`` >>> spc = splat.getSpectrum(spt = 'L5', lucky=True)[0] >>> splot.plotSpectrum(spc,ldwarf=True) .. image:: _images/plot_basic_features_example2.png :width: 400 :align: center To label and shade regions of telluric absorption, set ``telluric`` = True >>> splot.plotSpectrum(spc,telluric=True) .. image:: _images/plot_basic_features_example3.png :width: 400 :align: center To add a legend, use the ``legend`` or ``label`` keyword: >>> spc = splat.getSpectrum(lucky=True)[0] >>> spt,spt_e = splat.classifyByStandard(spc) >>> splot.plotSpectrum(spc,legend=['{} SpT = {}'.format(spc.shortname,spt)]) .. image:: _images/plot_basic_features_example4.png :width: 400 :align: center You can vary the size and location of the legend using the ``legendfontscale`` and ``legendlocation`` keywords. Insets ~~~~~~ You can place an inset in your plot to zoom in on a particular feature using the ``inset`` keyword: >>> spc = splat.getSpectrum(sbinary=True, lucky=True)[0] >>> spc.normalize() >>> splot.plotSpectrum(spc,inset=True) .. image:: _images/plot_basic_inset_example1.png :width: 400 :align: center You can get some control over the positioning and sampled range using ``inset_position`` (left edge, bottom edge, width, height) and ``inset_xrange``: >>> splot.plotSpectrum(spc,inset=True,inset_xrange=[1.52,1.72],inset_position=[0.6,0.55,0.28,0.32]) .. image:: _images/plot_basic_inset_example2.png :width: 400 :align: center Colors and line styles ^^^^^^^^^^^^^^^^^^^^^^ .. _linestyles: http://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle .. _colors: http://matplotlib.org/api/colors_api.html .. _colormaps: http://matplotlib.org/api/pyplot_summary.html?highlight=colormaps#matplotlib.pyplot.colormaps `plotSpectrum()`_ uses the same commands as pyplot_ for setting colors_ (default black) and linestyles_ (default solid): >>> spc = splat.getSpectrum(spt = 'M9', lucky=True)[0] >>> splot.plotSpectrum(spc,color='red',linestyle=':') .. image:: _images/plot_basic_color_example1.png :width: 400 :align: center Manipulating the plot format ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ You can adjust the plot ranges using the ``xrange`` and ``yrange`` keywords >>> spc = splat.getSpectrum(spt = 'T5', lucky=True)[0] >>> spc.normalize() >>> splot.plotSpectrum(spc,xrange=[1.0,1.6],yrange=[0,2]) .. image:: _images/plot_basic_manipulate_example1.png :width: 400 :align: center Or change the labels of these axes using the ``xlabel`` and ``ylabel`` keywords >>> splot.plotSpectrum(spc,xrange=[1.0,1.6],yrange=[0,2],xlabel='A Length Quantity',ylabel='A Flux Density Quantity') .. image:: _images/plot_basic_manipulate_example3.png :width: 400 :align: center You can also adjust the plot size using the ``figsize`` keyword >>> splot.plotSpectrum(spc,figsize=(12,4)) .. image:: _images/plot_basic_manipulate_example2.png :width: 600 :align: center Exporting the plot ^^^^^^^^^^^^^^^^^^ To export the plot to a file, simply set the ``file`` keyword: >>> splot.plotSpectrum(spc,file='myplot.pdf') Note that matplotlib_ automatically figures out the file format based on the filename suffix. Plotting multiple spectra ------------------------- `plotSpectrum()`_ can also manage plotting multiple spectra, either on top of each other or stacked in the plot, or across multiple. There are also separate routines to handle common cases. Comparison plots ^^^^^^^^^^^^^^^^ Spectra can be stacked on top of each other using the ``stack`` parameter, which is a numerical value that indicates the offset between sequential spectra. For example, the plot the sequence of NIR L dwarf standards: >>> splat.initiateStandards() >>> stdspt = [splat.typeToNum(i) for i in range(20,30)] >>> sps = [splat.STDS_DWARF_SPEX[s] for s in stdspt] >>> [EXAMPLE NEEDED MULTIPLE SPECTRA] [PLOTBATCH] [PLOTSEQUENCE] Multi-page plots ^^^^^^^^^^^^^^^^ Other Plotting Tools -------------------- plotMap() ^^^^^^^^^ `plotMap()`_ plots coordinates onto a sky map, with options to plot groups of coordinates with different colors, symbols, and symbol sizes. `plotMap()`_ takes as its primary input an array of astropy Skycoord objects, but will do conversions as necesssary with `properCoordinates()`_. Map projections are those defined in the matplotlib `Basemap documentation `_. For example, to plot all of the sources labeled "young" in the SPLAT library: >>> s = splat.searchLibrary(young=True) >>> c = [splat.properCoordinates(x) for x in s['DESIGNATION']] >>> splot.plotMap(c) .. image:: _images/example_plotmap_young.png Or to plot bright M dwarfs and L dwarfs separately, and save to a file: >>> sm = splat.searchLibrary(spt=['M0','M9.5'],jmag=13) >>> sl = splat.searchLibrary(spt=['L0','L9.5'],jmag=13) >>> cm = [splat.properCoordinates(x) for x in sm['DESIGNATION']] >>> cl = [splat.properCoordinates(x) for x in sm['DESIGNATION']] >>> splot.plotMap(cm,cl,colors=['k','r'],markers=['o','o'],alpha=[0.3,0.9],output='bright_ml_map.pdf') .. image:: _images/example_plotmap_brightml.png Examples -------- **Example 1: A simple view of a random spectrum** This example shows various ways of displaying a random spectrum in the library >>> import splat >>> spc = splat.getSpectrum(spt = 'T5', lucky=True)[0] # select random spectrum >>> spc.`plot()` # this automatically generates a "quicklook" plot >>> splat.plotSpectrum(spc) # does the same thing >>> splat.plotSpectrum(spc,uncertainty=True,tdwarf=True) # show the spectrum uncertainty and T dwarf absorption features The last plot should look like the following: .. image:: _images/plot_example1.png :width: 400 :align: center **Example 2: Compare two spectra** Optimally scale and compare two spectra. >>> import splat >>> spc = splat.getSpectrum(spt = 'T5', lucky=True)[0] # select random spectrum >>> spc2 = splat.getSpectrum(spt = 'T4', lucky=True)[0] # read in another random spectrum >>> comp = splat.compareSpectra(spc,spc2) # compare spectra to get optimal scaling >>> spc2.scale(comp[1]) # apply optimal scaling >>> splat.plotSpectrum(spc,spc2,colors=['black','red'],labels=[spc.name,spc2.name]) # show the spectrum uncertainty and T dwarf absorption features .. image:: _images/plot_example2.png :width: 400 :align: center **Example 3: Compare several spectra for a given object** In this case we'll look at all of the spectra of TWA 30B in the library, sorted by year and compare each to the first epoch data. This is an example of using both multiplot and multipage. >>> splist = splat.getSpectrum(name = 'TWA 30B') # get all spectra of TWA 30B >>> junk = [sp.normalize() for sp in splist] # normalize the spectra >>> dates = [sp.date for sp in splist] # observation dates >>> spsort = [s for (d,s) in sorted(zip(dates,splist))] # sort spectra by dates >>> dates.sort() # don't forget to sort dates! >>> splat.plotSpectrum(spsort,multiplot=True,layout=[2,2],multipage=True,\ # here's our plot statement comparison=spsort[0],uncertainty=True,mdwarf=True,telluric=True,legends=dates,\ legendLocation='lower left',output='TWA30B.pdf') Here is the first page of the resulting 5 page pdf file .. image:: _images/plot_example3.png :width: 500 :align: center **Example 4: Display the spectra sequence of L dwarfs** This example uses the list of standard files contained in SPLAT, and illustrates the stack feature >>> spt = [splat.typeToNum(i+20) for i in range(10)] # generate list of L spectral types >>> splat.initiateStandards() # initiate standards >>> splist = [splat.SPEX_STDS[s] for s in spt] # extact just L dwarfs >>> junk = [sp.normalize() for sp in splist] # normalize the spectra >>> labels = [sp.shortname for sp in splist] # set labels to be names >>> splat.plotSpectrum(splist,figsize=[10,20],labels=labels,stack=0.5,\ # here's our plot statement colorScheme='copper',legendLocation='outside',telluric=True,output='lstandards.pdf') .. image:: _images/plot_example4.png :width: 400 :align: center *Search* * :ref:`genindex` * :ref:`modindex` * :ref:`search`